SSIO 2015 Internship Opportunity Position

Internship Information

Project title: Understanding geodesy and water level trends in the Great Lakes in preparation for the International Great Lakes Datum update

NOAA mission goal: Resilient Coastal Communities and Economies

Hypothesis or objectives: The student will be part of a team at the NOS Center for Operational Oceanographic Products and Services (CO-OPS) that is working toward updating the International Great Lakes Datum (IGLD). The Datum is updated every 30 years mainly due to differing rates of vertical land movement. Coordination of the Datum update is accomplished through a bilateral committee between the United States and Canada. The Datum update requires the use of new survey techniques and technology; GPS/GNSS measurements; determining vertical velocity rates across the Great Lakes region; the use of specialized state of the art survey equipment to reference the Datum at CO-OPS water level stations; and the use of new water level data collection methodologies, Microwave Water Level sensors, to measure the lake level surfaces. Water level data will be collected from 2017-2023 using short term gauge installations and are used in conjunction with GPS measurements that will be taken in 2015 and 2020 and a new North American GRAVD geoid model from the National Geodetic Survey (NGS) to determine the new Datum. As preparations continue for the Datum update, there are several technical questions that remain unanswered that are important to the final product. The student will work closely with the team to investigate some of these questions.

Please note: Academic Status could be Undergraduate or Graduate

Academic status: Undergraduate

Area(s) of discipline: Earth Science, Engineering, Environmental Science Studies, Geography, Marine And Aquatic Sciences, Mathematics, Oceanography, Physics

Internship location: Silver Spring, MD

Duties and responsibilities: There are several topics related to the International Great Lakes Datum update that the student can work on.

In one topic, the student will work alongside oceanographers to determine the best practices for defining Low Water Datum (LWD) in the Great Lakes. Presently each Lake has a LWD value assigned relative to the IGLD 1985. Subject Matter Experts report that an analysis was performed using historical monthly mean data for the Master Reference Stations to come up with a conservative elevation for navigation purposes. However, during the recent low water stages, the water levels were often below the existing LWD elevations for Superior, Huron and Michigan. LWD needs to be updated relative to the new IGLD2020, but the methods have to be established and documented first. This will require the student to assist in analyzing historical Great lakes
require the student to assist in analyzing historical Great Lakes
water levels.

One of the other topics the student will work on is to help
calculate and define the hydraulic correctors associated with both
long and short term water level installations, utilizing test data
sets that are being collected in FY14 and FY15. Hydraulic
correctors are small offsets used to relate a subordinate water
level gauge’s value of Mean Water Level to the Master control
station’s value on each Lake. Determining the hydraulic
correctors for new subordinate gauging locations will require
investigating new methods for implementing an interpolation
model across the Great Lakes. There is an existing spatial
interpolation model, based on a NAVD88/IGLD85 model
developed by NGS, being used for interpolation of hydraulic
correctors in the NOAA VDatum tool. However, the model is
known to have inaccuracies in some areas, is not well
understood, and needs further documentation. An updated
approach using existing expertise and experience with the TCARI
spatial interpolation tool used mainly in NOS hydrographic and
shoreline surveys has been proposed. The TCARI methodology is
well documented, well understood, well tested, and is being used
for several NOS operational purposes. In order to fully implement
this interpolation scheme, a better understanding of historic data
is needed. While learning about TCARI implementation, the
student will enter a backlog of bench mark leveling data and other
metadata into a database that is owned by the National Geodetic
Survey and the Center for Operational Oceanographic Products
and Services, and used to deliver the information to private
sector, public and federal agencies. Due to the large amount of
data in backlog, the student would most likely focus on one Lake
to work on.

The student will also help create a published bench mark sheet
for the Lakes bench marks. The Lakes do not have published
bench mark sheets such as the coastal tidal bench marks do, and
we do not expect the sheets to contain the same information.
However, there is some location information and hydraulic
corrector information that could be included in a published sheet
that would link to NGS data sheets. This information is helpful for
the many coastal engineers and resource managers in the region.

Lastly, the student could possibly participate in a field trip, if
funds are available and if the timing aligns well, to the Great
Lakes to assist with install or removal of water level sensors as
part of the FY15 Coastal Storms Program project in the Lakes.
Also, it is possible that the student could participate on a National
Geodetic Survey trip to assist with GPS measurements in the
summer of 2015.

Special skills/training
required:
- Preferably some knowledge of tidal or geodetic datums
- Preferably knowledge of statistics
- Some knowledge of interpolating schemes
- Ability to work independently after being provided guidance
- Good organization skills and ability to meet deadlines
- Good interpersonal and communication skills
- Demonstrated analytical skills
- Training will provided in datum and hydraulic corrector
determination based on the 1985 method
- Training will be provided in the input formats and specifications
of the National Geodetic Survey’s data base known as the NGS
“Bluebook.”

Expected outcomes:
The student will have an opportunity to work on a project that will
help create the future International Great Lakes Datum, with
implications for regulations on navigation and construction along
the Great Lakes. While working with scientists with diverse
the Great Lakes. While working with scientists with diverse backgrounds, the student will gain experience in the practical application of scientific and engineering data analyses to operational observing systems. The student will gain knowledge in several areas including project planning, long-term lake level trends and variations in the Lakes, geodesy, geodetic and water level datums, interpolation methods, and water level and GPS measurement technology. The student will take away knowledge of a few of NOAA’s programs missions and goals to protect the environment and serve the public.

Guidance and supervision: The student will be given guidance by multiple CO-OPS personnel, including the Chief Scientist, Technical Experts, Engineers, and Oceanographers that are familiar with the Lakes. The student will learn about the International Great Lakes Datum and how it differs from coastal tidal datums. The student will learn about geodetic datums including NAVD88. The student will be part of the Engineering Division at CO-OPS and report to the Engineering and Development Branch Chief. The student will also work closely with the Oceanographic Division.

Internship Travel Information

Purpose (student’s role): ---
Mode of transportation: ---
Date(s): ---
Destination: ---
Estimated cost: ---
Source of funding: ---

Mentors Contact Information

Name: Morgan Mchugh
Organization: National Ocean Service (NOS)
Program office: Center for Operational Oceanographic Products and Services
Mailing address: 1305 East-West Hwy
 Silver Spring, MD 20910
Fax number: None
Phone number: 301-713-2981 x200
Email: morgan.mchugh@noaa.gov
Co-Mentor name: Laura Rear Mclaughlin
Co-Mentor email: laura.rear.mclaughlin@noaa.gov
Agency or organization: NOAA/NOS/CO-OPS